Abstract

IASCC of stainless steel has been the most important issue for internals BFBs. The inspection data analysis indicates that there is a closed relation between irradiation fluence and cracked BFBs distribution. Then the nanoindentation and 3DAP tests were carried out to study the hardening and radiation induced segregation (RIS) behaviors of the reactor internals stainless steel specimens irradiated with 6 MeV Xe ions at room temperature. It is indicated that higher irradiation damage will cause more significant hardening and RIS and consequently increase the IASCC susceptibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.