Abstract

The phase transition of zinc sulfide (ZnS) from Zinc-blende (ZB) to a rocksalt (RS) structure and the elastic, thermodynamic properties of the two structures under high temperature and pressure are investigated by first-principles study based on the pseudo-potential plane-wave density functional theory (DFT) combined with the quasi-harmonic Debye model. The lattice constant [Formula: see text], bulk modulus [Formula: see text] and the pressure derivative of bulk modulus [Formula: see text]’ of the two structures are calculated. The results are in good agreement with experimental results and the other theoretical data. From the energy–volume curve, enthalpy equal principle and mechanical stability criterion, the transition pressures from the ZB to the RS structure are 16.83, 16.96 and 16.61 GPa, respectively. The three results and the experimental values 14.7–18.1, 16 GPa are very close to each other. Then the elastic properties are also calculated under the pressure ranging from 0 to 30 GPa. Finally, through the quasi-harmonic Debye model, the thermodynamic properties dependence of temperature and pressure in the ranges between 0–1600 K and 0–30 GPa are obtained successfully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call