Abstract

A milestone in our understanding of the chemistry of the defect solid state has been achieved through new insights provided by recently published neutron diffraction studies of five rare earth oxides with compositions in the range M2O3-MO2. For more than four decades the exact way by which gross concentrations (i.e., up to 25%) of vacant sites can be accommodated in the fluorite MO2 lattice has remained largely unresolved. There is now compelling evidence that the vacancies do not exist in isolation but as octahedral 'coordination defects' of composition {MIII/2MIV/1.5□O6}. It is now clear that the intricate planar patterns formed by anion vacancies in the fluorite lattice arise from the unique and structure-determining topology of these coordination defects. The decisive role played by the coordination defect in generating extended defects in these fluorite-related oxides is highlighted in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.