Abstract

Determining the precise structures of small gold clusters is an essential step towards understanding their chemical and physical properties. Due to the relativistic nature of gold, its clusters remain planar (2D) up to appreciable sizes. Ion mobility experiments have suggested that positively charged gold clusters adopt three-dimensional (3D) structures from n = 8 onward. Computations predict, depending on the level of theory, 2D or 3D structures as putative energy-minimum for n = 8. In this work, far-infrared multiple photon dissociation spectroscopy, using Ar as tagging element, is combined with density-functional theory calculations to determine the structures of Aun+ (n≤ 9) clusters formed by laser ablation. While the Au frameworks in Au6Arm+ and Au7Arm+ complexes are confirmed to be planar and that in Au9Arm+ three-dimensional, we demonstrate the coexistence of 3D and planar Au8Arm+ (m = 1-3) isomers. Thus, it is revealed that at finite temperatures, the formal 2D to 3D transition takes place at n = 8 but is not sharp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.