Abstract

The structure and microplasticity of high-purity fullerite C60 have been investigated comprehensively. The crystalline structure, lattice parameters, and phase transitions have been studied by x-ray diffractometry in the temperature range 30–293 K. It is found that the temperature corresponding to the orientational order–disorder phase transition is Tc=260 K. A considerable number of regions with stacking faults discovered in the samples leads to blurring of the fcc→sc phase transition in the temperature interval Tc±3 K. The a(T) dependences of the lattice parameter display peculiarities at the following characteristic temperatures: Tc at which the lattice parameter jump Δa/a=3.3×10−3 is observed, and the temperatures T0≃155 K, and Tg≃95 K which are associated with the beginning and end of molecular orientation freezing. It is shown that the formation of orientational glass is accompanied by a considerable increase in the width of x-ray reflections. The slip geometry and the temperature dependence of microhardness HV are studied in the temperature interval 81–293 K. It is shown that a system of the {111}〈110〉 type is the only slip system in the fcc and sc phases. The value of HV depends on the indentation plane: HV111>HV100. Below Tc, the microhardness increases abruptly (by approximately 30%). The temperature interval of this anomaly decreases after annealing of the crystal in vacuum. At T<T0, the HV(T) dependence becomes much stronger. It is shown that the hardness of C60 normalized to the elastic shear modulus is higher than the hardness of typical molecular crystals at comparable homologic temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.