Abstract
Let Λ be an isolated non-trivial transitive set of a C 1 generic diffeomorphism f ∈ Diff(M). We show that the space of invariant measures supported on Λ coincides with the space of accumulation measures of time averages on one orbit. Moreover, the set of points having this property is residual in Λ (which implies that the set of irregular+ points is also residual in Λ). As an application, we show that the non-uniform hyperbolicity of irregular+ points in Λ with totally 0 measure (resp., the non-uniform hyperbolicity of a generic subset in Λ) determines the uniform hyperbolicity of Λ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.