Abstract

The proton decoupled 40.48 M Hz 31P NMR spectrum of intact and unperturbed membrane-enclosed vesicular stomatitis virus (serotype Indiana) exhibited two distinct maxima. These can be resolved into a narrow, symmetric line and a broad asymmetric line. The 31P NMR spectrum of a multilamellar (unsonicated) preparation of the extracted viral lipids exhibited a line shape similar to that of the intact virus. A sonicated vesicle preparation of the extracted viral lipids exhibited a narrow symmetric line. The narrow component in the intact virus spectrum may be attributed to small membrane fragments. Phospholipase C digestion of the intact virus resulted in substantial reduction in intensity of both components which suggests that much of the contribution to both peaks is due to phosphate in the phospholipid polar head groups. The phospholipid phosphates in both sonicated and unsonicated preparations of the extracted viral lipids exhibited substantially longer relaxation times than did those in the intact virus. The short relaxation time emanating from the intact virus preparation is caused by immobilization of the phospholipid head groups which could be due to lipid-protein interactions. Trypsin treatment of vesicular stomatitis virions, which results in complete removal of the exterior hydrophilic segment of the membrane glycoprotein, increased the 31P relaxation time to a value similar to that observed in the protein-free total lipid extracts; this finding provides supporting evidence for the role of virus glycoprotein in shortened relaxation times. A reversible temperature-dependent change in apparent line width and absence of an effect of cholesterol on the 31P phospholipid spectrum were also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call