Abstract
1. Introduction. In (1) we proved that the direct sum of a finite number of unique factorization rings is a unique factorization ring (UFR), and in particular that the direct sum of a finite number of unique factorization domains (UFD's) is a UFR. The converse, however, does not hold i.e. not every UFR can be expressed as a direct sum of UFD's. Here we investigate the structure of UFR's and show that every UFR is a finite direct sum of UFD's and of special UFR's. There is thus a relationship with the structure theorem for principal ideal rings ((2), p. 245).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.