Abstract

AbstractThe sorption of the uranyl oxo-cation (UO22+)at different types of binding sites on layer silicate mineral surfaces was investigated. Well-characterized samples of vermiculite and hydrobiotite were exposed to aqueous uranyl under conditions designed to promote surface sorption either at fixed charge ionexchange sites or at amphoteric surface hydroxyl sites. The local structure of uranium in the sorption samples was directly measured using uranium L3-edge extended X-ray absorption fine structure (EXAFS). Polarized L1- and L3-edge X-ray absorption near-edge structure (XANES) measurements were used to characterize the orientation of uranyl groups in layered samples. X-ray diffraction (XRD) measurements of interlayer spacings were used to assess the effects of ion-exchange and dehydration upon the mineral structure. The most significant findings are: (1) Under conditions which greatly favor ion-exchange sorption mechanisms, uranyl retains a symmetric local structure suggestive of an outer-sphere complex, with a preferred orientation of the uranyl axis parallel to the mineral layers; (2) Upon dehydration, the ionexchange complexes adopt a less symmetric structure, consistent with an inner-sphere complex, with less pronounced orientation of the uranyl axis; and (3) For conditions which favor sorption at surface hydroxyl sites, uranyl has a highly distorted equatorial shell, indicative of stronger equatorial ligation, and the detection of a neighboring U atom suggests the formation of surface precipitates and/or oligomeric complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call