Abstract

The flow of a viscous incompressible fluid in a plane channel is simulated numerically with the use of a computational code for the numerical integration of the Navier–Stokes equations, based on a mixed spectral-finite difference technique. A turbulent-flow database representing the turbulent statistically steady state of the velocity field through 10 viscous time units is assembled at friction Reynolds number Re τ =180 and the coherent structures of turbulence are extracted from the fluctuating portion of the velocity field using the proper orthogonal decomposition (POD) technique. The temporal evolution of a number of the most energetic POD modes is represented, showing the existence of dominant flow structures elongated in the streamwise direction whose shape is altered owing to the interaction with quasi-streamwise, bean-shaped turbulent-flow modes. This process of interaction is responsible for the gradual disruption of the streamwise modes of the flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.