Abstract
Let \(\Gamma \) be a closed co-compact subgroup of a second countable locally compact abelian (LCA) group \(G\). In this paper we study translation-invariant (TI) subspaces of \(L^2(G)\) by elements of \(\Gamma \). We characterize such spaces in terms of range functions extending the results from the Euclidean and LCA setting. The main innovation of this paper, which contrasts with earlier works, is that we do not require that \(\Gamma \) be discrete. As a consequence, our characterization of TI-spaces is new even in the classical setting of \(G=\mathbb {R}^n\). We also extend the notion of the spectral function in \(\mathbb {R}^n\) to the LCA setting. It is shown that spectral functions, initially defined in terms of \(\Gamma \), do not depend on \(\Gamma \). Several properties equivalent to the definition of spectral functions are given. In particular, we show that the spectral function scales nicely under the action of epimorphisms of \(G\) with compact kernel. Finally, we show that for a large class of LCA groups, the spectral function is given as a pointwise limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.