Abstract

The group of neurodegenerative diseases collectively known as tauopathies are characterized by hallmark lesions consisting of fibrillar aggregates of the microtubule-associated protein, tau (MAPT). Mutations of the tau gene (MAPT) are the cause of frontotemporal dementia with parkinsonism linked to chromosome 17, giving tau a central role in the pathogenic process. The chromosomal region containing MAPT has been shown to evolve into two major haplotypes, H1 and H2, which are defined by linkage disequilibrium (LD) between several polymorphisms over the entire MAPT gene. Studies to date suggest a complete absence of recombination between these two haplotypes. The more common haplotype H1 is over-represented in patients with progressive supranuclear palsy (PSP) and corticobasal degeneration. Using single nucleotide polymorphisms, we mapped LD in the regions flanking MAPT and have established the maximum extent of the haplotype block on chromosome 17q21.31 as a region covering approximately 2 Mb. This gene-rich region extends centromerically beyond the corticotrophin releasing hormone receptor 1 gene (CRHR1) to a region of approximately 400 kb, where there is a complete loss of LD. The telomeric end is defined by an approximately 150 kb region just beyond the WNT3 gene. We show that the entire, fully extended H1 haplotype is associated with PSP, which implicates several other genes in addition to MAPT, as candidate pathogenic loci.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.