Abstract
Let F be an imaginary quadratic number field and K 2 O F the tame kernel of F. In this article, we determine all possible values of r 4(K 2 O F ) for each type of imaginary quadratic number field F. In particular, for each type of imaginary quadratic number field we give the maximum possible value of r 4(K 2 O F ) and show that each integer between the lower and upper bounds occurs as a value of the 4-rank of K 2 O F for infinitely many imaginary quadratic number fields F.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.