Abstract

Fe-S clusters are critical cofactors for redox chemistry in all organisms. The cysteine desulfurase, SufS, provides sulfur in the SUF Fe-S cluster bioassembly pathway. SufS is a dimeric, PLP-dependent enzyme that uses cysteine as a substrate to generate alanine and a covalent persulfide on an active site cysteine residue. SufS enzymes are activated by an accessory transpersulfurase protein, either SufE or SufU depending on the organism, which accepts the persulfide product and delivers it to downstream partners for Fe-S assembly. Here, using E. coli proteins, we present the first X-ray crystal structure of a SufS/SufE complex. There is a 1:1 stoichiometry with each monomeric unit of the EcSufS dimer bound to one EcSufE subunit, though one EcSufE is rotated ∼7° closer to the EcSufS active site. EcSufE makes clear interactions with the α16 helix of EcSufS and site-directed mutants of several α16 residues were deficient in EcSufE binding. Analysis of the EcSufE structure showed a loss of electron density at the EcSufS/EcSufE interface for a flexible loop containing the highly conserved residue R119. An R119A EcSufE variant binds EcSufS but is not active in cysteine desulfurase assays and fails to support Fe-S cluster bioassembly in vivo. 35S-transfer assays suggest that R119A EcSufE can receive a persulfide, suggesting the residue may function in a release mechanism. The structure of the EcSufS/EcSufE complex allows for comparison with other cysteine desulfurases to understand mechanisms of protected persulfide transfer across protein interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.