Abstract
To detect structural changes in the second cytosolic loop of the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae AAC2, we prepared 20 single cysteine mutants by replacing each amino acid in the S213 to L232 region. All single cysteine mutants were fully functional, because they could restore growth on glycerol of a yeast strain lacking functional ADP/ATP carriers. First, these single-Cys mutants were treated with carboxyatractyloside to lock the carrier in the cytosolic state or with bongkrekic acid to generate the matrix state, and then with the membrane-impermeable SH reagent eosin-5-maleimide (EMA) to probe accessibility. The amino acid residues S213C, L214C, F231C and L232C were not labeled, indicating that these 4 residues must have been buried in the membrane, whereas the region between residues K215 and S230 is accessible to labeling and must, therefore, have protruded into the aqueous phase. Residue L218C showed strong resistance against EMA labeling regardless of the state of the carrier, but the reason for such behavior is unclear. On the contrary, the labeling of the residues between F227C and S230C was strongly dependent on the state of the carrier. Thus, the C-terminal region of the second cytosolic loop in AAC2 changes its environment when the carrier cycles between the matrix and cytosolic state.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.