Abstract

The amino acid serine has long been known to form a protonated "magic-number" cluster containing eight monomer units that shows an unusually high abundance in mass spectra and has a remarkable homochiral preference. Despite many experimental and theoretical studies, there is no consensus on a Ser8H+ structure that is in agreement with all experimental observations. Here, we present the structure of Ser8H+ determined by a combination of infrared spectroscopy and ab initio molecular dynamics simulations. The three-dimensional structure that we determine is ∼25 kcal mol-1 more stable than the previous most stable published structure and explains both the homochiral preference and the experimentally observed facile replacement of two serine units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call