Abstract

Invariance under finite renormalization group (RG) transformations is used to structure the invariant charge in models with one coupling in the 4 lowest orders of perturbation theory. In every order there starts a RG-invariant, which is uniquely continued to higher orders. Whereas in massless models the RG-invariants are power series in logarithms, there is no such requirement in a massive model. Only when one applies the Callan-Symanzik (CS) equation of the respective theories is the high-energy behavior of the RG-invariants restricted. In models where the CS-equation has the same form as the RG-equation, the massless limit is reached smoothly, i.e., the β-functions are constants in the asymptotic limit and the RG-functions starting the new invariant tend to logarithms. On the other hand, in the spontaneously broken models with fermions the CS-equation contains a β-function of a physical mass. As a consequence the β-functions depend on the normalization point also in the asymptotic region and a mass independent limit does not exist anymore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.