Abstract

Urease, the most efficient enzyme known, contains an essential dinuclear NiII cluster in the active site. It catalyzes the hydrolysis of urea, inducing a rapid pH increase that has negative effects on human health and agriculture. Thus, the control of urease activity is of utmost importance in medical, pharmaceutical, and agro-environmental applications. All known urease inhibitors are either toxic or inefficient. The development of new and efficient chemicals able to inhibit urease relies on the knowledge of all steps of the catalytic mechanism. The short (microseconds) lifetime of the urease-urea complex has hampered the determination of its structure. The present study uses fluoride to substitute the hydroxide acting as the co-substrate in the reaction, preventing the occurrence of the catalytic steps that follow substrate binding. The 1.42 Å crystal structure of the urease-urea complex, reported here, resolves the enduring debate on the mechanism of this metalloenzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.