Abstract
The paper analyzes the complex topology of swirling flows generated in the cylinder by its rotating end face. Using the flow visualization for different parameters of swirl of the upper end of the cylinder, the general laws of the evolution of the region with a counter flow (bubble-like vortex decay) are shown regardless of the contact of the studied vortex flow with various liquids or gas at the free end. The research has found for the first time that the scenario for the appearance of the bubble-like breakdown region depends weakly on the properties of the medium that restricts the circulation of the working fluid, but differs significantly from the dynamics of vortex flows limited by the “solid” second wall - the fixed end of the cylinder. For example, during the axial vortex breakdown, the modes of stationary vortex motion with the appearance of the recirculation zone contact with the interface surface of two media have been revealed, which is not typical for closed flows. The results obtained are of interest for further development of vortex devices and reactors that provide complex vortex motion of ingredients for mass transfer intensification, both in terms of optimizing the operation of existing setups and for designing new devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.