Abstract

In Eryngium vesiculosum and E. rostratum, the leaf collenchyma is characterized by the development of a lignified secondary wall in the final stages of cell differentiation. The collenchyma wall is rich in pectic substances which are distributed uniformly. In the outer limiting region of the collenchyma wall the microfibril orientation is random and this structure is considered to be the wall formed at cell division. The collenchyma wall consists of six to eight layers in which the microfibrils are alternately transversely and longitudinally oriented. Each layer consists of a number of lamellae of microfibrils. In the secondary lignified wall the cellulose microfibrils are arranged helically, the direction of their orientation making an angle of 40-45° to the cell axis. Excised leaf segments showed greatest elongation in solutions of glucose and 3-indoleacetic acid, when the collenchyma walls were thin, and no elongation occurred in segments in which secondary wall formation had commenced. In radial sections layers of transversely oriented microfibrils could not be seen distant from the lumen although discontinuities in wall texture were apparent. Layers of transversely oriented microfibrils could be seen adjacent to the lumen. It is suggested that reorientation of layers of initially transversely oriented microfibrils takes place during elongation of the cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call