Abstract

An F-center laser–molecular beam spectrometer has been used to obtain a sub-Doppler resolution infrared spectrum of the carbon dioxide dimer. The vibrational mode investigated in this study corresponds to the ν1+ν3 combination mode of the monomer located at 3716 cm−1. A qualitative assignment of the spectrum shows unambiguously that the equilibrium structure of the dimer is the slipped parallel, rather than the T-shaped, geometry. The observed spectrum cannot be fit to within experimental error using conventional asymmetric rotor formalism. This may be due to a number of factors such as Fermi resonance between the upper state levels of the band and nearby levels of the dimer, such as seen in the monomer, or it could arise from tunneling effects arising from the two large amplitude motions in the dimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.