Abstract
To identify the bacterial and archaeal composition in a mesophilic biogas digester treating pig manure and to compare the consistency of two 16S rDNA-based methods to investigate the microbial structure. Sixty-nine bacterial operational taxonomic units (OTU) and 25 archaeal OTU were identified by sequencing two 16S rDNA clone libraries. Most bacterial OTU were identified as phyla of Firmicutes (47.2% of total clones), Bacteroides (35.4%) and Spirochaetes (13.2%). Methanoculleus bourgensis (29.0%), Methanosarcina barkeri (27.4%) and Methanospirillum hungatei (10.8%) were the dominant methanogens. Only 9% of bacterial and 20% of archaeal OTU matched cultured isolates at a similarity index of >or=97%. About 78% of the dominant bacterial (with abundance >3%) and 83% of archaeal OTU were recovered from the denaturing gradient gel electrophoresis (DGGE) bands of V3 regions in 16S rDNAs. In the digester, most bacterial and archaeal species were uncultured; bacteria belonging to Firmicutes, Bacteroides and Spirochaetes seem to take charge of cellulolysis, proteolysis, acidogenesis, sulfur-reducing and homoacetogenesis; the most methanogens were typical hydrogenotrophic or hydrogenotrophic/aceticlastic; DGGE profiles reflected the dominant microbiota. This study gave a first insight of the overall microbial structure in a rural biogas digester and also indicated DGGE was useful in displaying its dominant microbiota.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.