Abstract
We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is a useful deterministic automaton accepting all suffixes of the word. We show that dawg's of Fibonacci words have particularly simple structure. Our main result is a unifying framework for a large collection of relatively simple properties of Fibonacci words. The simple structure of dawgs of Fibonacci words gives in many cases simplified alternative proofs and new interpretation of several well-known properties of Fibonacci words. In particular, the structure of lengths of paths corresponds to a number-theoretic characterization of occurrences of any subword. Using the structural properties of dawg's it can be easily shown that for a string w we can check if w is a subword of a Fibonacci word in time O ( | w | ) and O ( 1 ) space. Compact dawg's of Fibonacci words show a very regular structure of their suffix trees and show how the suffix tree for the Fibonacci word grows (extending the leaves in a very simple way) into the suffix tree for the next Fibonacci word.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.