Abstract

In this paper we study structural properties of shift–modulation invariant (SMI) spaces, also called Gabor subspaces, or Weyl–Heisenberg subspaces, in the case when shift and modulation lattices are rationally dependent. We prove the characterization of SMI spaces in terms of range functions analogous to the well-known description of shift-invariant spaces [C. de Boor, R. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in L 2 ( R d ) , J. Funct. Anal. 119 (1994) 37–78; M. Bownik, The structure of shift-invariant subspaces of L 2 ( R n ) , J. Funct. Anal. 177 (2000) 282–309; H. Helson, Lectures on Invariant Subspaces, Academic Press, New York/London, 1964]. We also give a simple characterization of frames and Riesz sequences in terms on their behavior of the fibers of the range function. Next, we prove several orthogonal decomposition results of SMI spaces into simpler blocks, called principal SMI spaces. Then, this is used to characterize operators invariant under both shifts and modulations in terms of families of linear maps acting on the fibers of the range function. We also introduce the fundamental concept of the dimension function for SMI spaces. As a result, this leads to the classification of unitarily equivalent SMI spaces in terms of their dimension functions. Finally, we show several results illustrating our fiberization techniques to characterize dual Gabor frames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.