Abstract

We present an analysis of the structure of post-starburst (PSB) galaxies in the redshift range $0.5 < z < 2$, using a photometrically-selected sample identified in the Ultra Deep Survey (UDS) field. We examine the structure of $\sim80$ of these transient galaxies using radial light $\mu(r)$ profiles obtained from CANDELS $\textit{Hubble Space Telescope}$ near-infrared/optical imaging, and compare to a large sample of $\sim2000$ passive and star-forming galaxies. For each population, we determine their typical structural properties (effective radius $r_{\rm e}$, S\'ersic index $n$) and find significant differences in PSB structure at different epochs. At high redshift ($z > 1$), PSBs are typically massive ($M_* > 10^{10}\rm\,M_{\odot}$), very compact and exhibit high S\'ersic indices, with structures that differ significantly from their star-forming progenitors but are similar to massive passive galaxies. In contrast, at lower redshift ($0.5 < z < 1$), PSBs are generally of low mass ($M_* < 10^{10}\rm\,M_{\odot}$) and exhibit compact but less concentrated profiles (i.e. lower S\'ersic indices), with structures similar to low-mass passive discs. Furthermore, for both epochs we find remarkably consistent PSB structure across the optical/near-infrared wavebands (which largely trace different stellar populations), suggesting that any preceding starburst and/or quenching in PSBs was not strongly centralized. Taken together, these results imply that PSBs at $z > 1$ have been recently quenched during a major disruptive event (e.g. merger or protogalactic collapse) which formed a compact remnant, while at $z < 1$ an alternative less disruptive process is primarily responsible. Our results suggest that high-$z$ PSBs are an intrinsically different population to those at lower redshifts, and indicate different quenching routes are active at different epochs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.