Abstract

Abstract Polychloroprene rubber (Neoprene Type GN) was fractionated by partial precipitation from dilute solution in benzene and the fractions were examined both osmotically and viscometrically in benzene solutions. The molecular-weight distribution curve for Neoprene Type GN based on osmotic pressure measurements shows a pronounced maximum at 100,000, but has a long extension to molecular weights of over one million, indicating the presence of branched or cross-linked material which is still soluble. The uniformity is somewhat less than that of sol natural rubber, while in shape the Neoprene distribution curve resembles more closely that of peptized natural rubber than fresh sol rubber. Observed variations in the slopes of the π/c vs. c and the ηsp/c vs. c curves also indicate the presence in solution of complex, branched and (or) cross-linked molecules. Calibration of the intrinsic viscosity-molecular weight relationship by osmotic pressure measurements gave good agreement with the equation: [η]=KMa, where K=1.46×10−4 and a=0.73.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call