Abstract

The structure of Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65 glasses was investigated by neutron diffraction (ND), X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) measurements at the Ge, Ga and Sb K-edges. Experimental data sets were fitted simultaneously in the framework of the reverse Monte Carlo (RMC) simulation technique. Short range order parameters were determined from the obtained large-scale configurations. It was found that the coordination numbers of Ge, Sb and S are around the values predicted by the Mott-rule (4, 3 and 2, respectively). The Ga atoms have on average 4 nearest neighbors. The structure of these stoichiometric glasses can be described by the chemically ordered network model: Ge-S, Ga-S and Sb-S bonds are the most important. Long Sb-S distances (0.3–0.4 Å higher than the usual covalent bond lengths) are observed, suggesting that Sb atoms can be found in various local environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.