Abstract

The kinetics of matrix dissolution and alkali-exchange for a series of sodium aluminosilicate glass compositions was determined at constant temperature and solution pH(D) under conditions of silica-saturation. Steady state release rate for sodium was 10–50 times faster than the rate of matrix dissolution, demonstrating that alkali exchange is an important long-term reaction mechanism that must be considered when modeling systems near saturation with respect to dissolved glass components. Sodium release rates were 30% slower in D 2O compared to rates in H 2O; but matrix dissolution rates were unaffected. These results are consistent with rupture of the OH bond as the rate-limiting reaction in Na +–H + exchange whereas matrix dissolution is controlled by OH − or H 2O catalyzed hydrolysis of SiOSi and SiOAl bonds. Changes in Na exchange rate with increasing Al 2O 3 content could not be reconciled with changes in the number of non-bridging oxygen (NBO) sites in the glass alone. A simple model was used to estimate a structural energy barrier for alkali ion exchange using NaO bond length and co-ordination as measured by Na K-edge X-ray absorption spectroscopy, and binding energy shifts for SiONa sites measured by X-ray photoelectron spectroscopy (XPS). The energy barrier was calculated to increase from 34 kJ mol −1 for Na 2O·2SiO 2 glass to 49 kJ mol −1 for a glass containing 15 mol% Al 2O 3, consistent with stronger bonding of Na on NBO sites and increasing mechanical stiffness of the glass network with increasing Al content. The calculated ion-exchange enthalpies were then used to calculate Na ion-exchange rates as a function of glass composition. Agreement between the calculated and measured Na ion exchange rates was excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.