Abstract

Abstract In this expository article one of the contributions of Jean Cavailles to the philosophy of mathematics is presented: the analysis of ‘mathematical experience’. The place of Cavailles on the logico-philosophical scene of the 30s and 40s is sketched. I propose a partial interpretation of Cavailles's epistemological program of so-called ‘conceptual dialectics’: mathematical holism, duality principles, the notion of formal contents, and the specific temporal structure of conceptual dynamics. The structure of mathematical abstraction is analysed in terms of its complementary dimensions: paradigmatic generalization (domain extension, descriptive definitions, creative role of the symbolism…) and thematic reflexivity of concepts (promotion of operations to objects of a higher type).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.