Abstract

Let $g_0,\dots,g_k: {\bf N} \to {\bf D}$ be $1$-bounded multiplicative functions, and let $h_0,\dots,h_k \in {\bf Z}$ be shifts. We consider correlation sequences $f: {\bf N} \to {\bf Z}$ of the form $$ f(a):= \widetilde{\lim}_{m \to \infty} \frac{1}{\log \omega_m} \sum_{x_m/\omega_m \leq n \leq x_m} \frac{g_0(n+ah_0) \dots g_k(n+ah_k)}{n} $$ where $1 \leq \omega_m \leq x_m$ are numbers going to infinity as $m \to \infty$, and $\widetilde{\lim}$ is a generalised limit functional extending the usual limit functional. We show a structural theorem for these sequences, namely that these sequences $f$ are the uniform limit of periodic sequences $f_i$. Furthermore, if the multiplicative function $g_0 \dots g_k$ "weakly pretends" to be a Dirichlet character $\chi$, the periodic functions $f_i$ can be chosen to be $\chi$-isotypic in the sense that $f_i(ab) = f_i(a) \chi(b)$ whenever $b$ is coprime to the periods of $f_i$ and $\chi$, while if $g_0 \dots g_k$ does not weakly pretend to be any Dirichlet character, then $f$ must vanish identically. As a consequence, we obtain several new cases of the logarithmically averaged Elliott conjecture, including the logarithmically averaged Chowla conjecture for odd order correlations. We give a number of applications of these special cases, including the conjectured logarithmic density of all sign patterns of the Liouville function of length up to three, and of the M\"obius function of length up to four.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.