Abstract

ABSTRACT After being launched, gamma-ray burst (GRB) jets propagate through dense media prior to their breakout. The jet-medium interaction results in the formation of a complex structured outflow, often referred to as a ‘structured jet’. The underlying physics of the jet-medium interaction that sets the post-breakout jet morphology has never been explored systematically. Here, we use a suite of 3D simulations to follow the evolution of hydrodynamic long and short gamma-ray bursts (lGRBs and sGRBs) jets after breakout to study the post-breakout structure induced by the interaction. Our simulations feature Rayleigh–Taylor fingers that grow from the cocoon into the jet, mix cocoon with jet material and destabilize the jet. The mixing gives rise to a previously unidentified region sheathing the jet from the cocoon, which we denote the jet–cocoon interface (JCI). lGRBs undergo strong mixing, resulting in most of the jet energy to drift into the JCI, while in sGRBs weaker mixing is possible, leading to a comparable amount of energy in the two components. Remarkably, the jet structure (jet-core plus JCI) can be characterized by simple universal angular power-law distributions, with power-law indices that depend solely on the mixing level. This result supports the commonly used power-law angular distribution, and disfavours Gaussian jets. At larger angles, where the cocoon dominates, the structure is more complex. The mixing shapes the prompt emission light curve and implies that typical lGRB afterglows are different from those of sGRBs. Our predictions can be used to infer jet characteristics from prompt and afterglow observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.