Abstract

We have previously shown that histone-depleted metaphase chromosomes can be isolated by treating purified HeLa chromosomes with dextran sulfate and heparin ( Adolph, Cheng and Laemmli, 1977a). The chromosomes form fast-sedimenting complexes which are held together by a few nonhistone proteins. In this paper, we have studied the histone-depleted chromosomes in the electron microscope. Our results show that: the histone-depleted chromosomes consist of a scaffold or core, which has the shape characteristic of a metaphase chromosome, surrounded by a halo of DNA; the halo consists of many loops of DNA, each anchored in the scaffold at its base; most of the DNA exists in loops at least 10–30 μm long (30–90 kilobases). We also show that the same results can be obtained when the histones are removed from the chromosomes with 2 M NaCl instead of dextran sulfate. Moreover, the histone-depleted chromosomes are extraordinarily stable in 2 M NaCI, providing further evidence that they are held together by nonhistone proteins. These results suggest a scaffolding model for metaphase chromosome structure in which a backbone of nonhistone proteins is responsible for the basic shape of metaphase chromosomes, and the scaffold organizes the DNA into loops along its length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.