Abstract

Using isophotal radius correlations for a sample of Two Micron All Sky Survey ellipticals, we have constructed a series of template surface brightness profiles to describe the profile shapes of ellipticals as a function of luminosity. The templates are a smooth function of luminosity, yet are not adequately matched to any fitting function supporting the view that ellipticals are weakly nonhomologous with respect to structure. Through comparison to the templates, it is discovered that ellipticals are divided into two families: those well matched to the templates, and a second class of ellipticals with distinctly shallower profile slopes. We refer to this second type of ellipticals as D class, an old morphological designation acknowledging diffuse appearance on photographic material. D ellipticals cover the same range of luminosity, size, and kinematics as normal ellipticals, but maintain a signature of recent equal-mass dry mergers. We propose that normal ellipticals grow after an initial dissipation formation era by accretion of low-mass companions as outlined in hierarchical formation scenarios, while D ellipticals are the result of later equal-mass mergers producing shallow luminosity profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.