Abstract

A strongly Fregean algebra is an algebra such that the class of its homomorphic images is Fregean and the variety generated by this algebra is congruence modular. To understand the structure of these algebras we study the prime intervals projectivity relation in the posets of their completely meet irreducible congruences and show that its cosets have the natural structure of a Boolean group. In particular, this approach allows us to represent congruences and elements of such algebras as the subsets of upward closed subsets of these posets with some special properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.