Abstract

Clostridiumdifficile toxin A (TcdA) is a member of the large clostridial toxin family, and is responsible, together with C. difficile toxin B (TcdB), for many clinical symptoms d ring human infections. Like other large clostridial toxins, TcdA catalyzes the glucosylation of GTPases, and is able to inactivate small GTPases within the host cell. Here, we report the crystal structures of the TcdA glucosyltransferase domain (TcdA-GT) in the apo form and in the presence of Mn(2+) and hydrolyzed UDP-glucose. These structures, together with the recently reported crystal structure of TcdA-GT bound to UDP-glucose, provide a detailed understanding of the conformational changes of TcdA that occur during the catalytic cycle. Indeed, we present a new intermediate conformation of a so-called 'lid' loop (residues 510-522 in TcdA), concomitant with the absence of glucose in the catalytic domain. The recombinant TcdA was expressed in Brevibacillus in the inactive apo form. High thermal stability of wild-type TcdA was observed only after the addition of both Mn(2+) and UDP-glucose. The glucosylhydrolase activity, which is readily restored after reconstitution with both these cofactors, was similar to that reported for TcdB. Interestingly, we found that ammonium, like K(+) , is able to activate the UDP-glucose hydrolase activities of TcdA. Consequently, the presence of ammonium in the crystallization buffer enabled us to obtain the first crystal structure of TcdA-GT bound to the hydrolysis product UDP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.