Abstract
X-ray studies at 2.5 Å resolution show that the active site of bovine liver rhodanese is a depression between the two domains. In sulfur-substituted rhodanese the density of the essential Cys247 corresponds with that of a persulfide. Both sulfur atoms are interacting via hydrogen bonds with several peptide NH and side-chain OH groups. One side of the active site pocket contains mainly hydrophylic, the other side mainly hydrophobic residues. None of these hydrophylic or hydrophobic groups appears to interact strongly with the persulfide. Crystals of the sulfur-substituted enzyme were treated with cyanide, a sulfur acceptor. Subsequent difference Fourier studies show that the extra sulfur atom has been removed. Only minor conformational differences appear to exist between the two rhodanese species studied. These are a movement of the Sγ atom of Cys247 and some rearrangement of solvent molecules near the active site. The combination of these observations with the results of experiments performed by other investigators suggest a mechanism for sulfur transfer by rhodanese in which the thiol group of Cys247 is the essential nucleophile, whereas the positive charges on Arg186 and Lys249 act in various ways as “electrophilic assistants”. The transition state and the persulfide in the sulfur-substituted enzyme are stabilized by several hydrogen bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.