Abstract

Metabolism across all known living systems combines two key features. First, all of the molecules that are required are either available in the environment or can be built up from available resources via other reactions within the system. Second, the reactions proceed in a fast and synchronized fashion via catalysts that are also produced within the system. Building on early work by Stuart Kauffman, a precise mathematical model for describing such self-sustaining autocatalytic systems (RAF theory) has been developed to explore the origins and organization of living systems within a general formal framework. In this paper, we develop this theory further by establishing new relationships between classes of RAFs and related classes of networks, and developing new algorithms to investigate and visualize RAF structures in detail. We illustrate our results by showing how it reveals further details into the structure of archaeal and bacterial metabolism near the origin of life, and provide techniques to study and visualize the core aspects of primitive biochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.