Abstract
In this work we study the structure of approximate solutions of variational problems with continuous integrands f :[0,∞)×R n×R n→R 1 which belong to a complete metric space of functions. We do not impose any convexity assumption. The main result in this paper deals with the turnpike property of variational problems. To have this property means that the approximate solutions of the problems are determined mainly by the integrand, and are essentially independent of the choice of interval and endpoint conditions, except in regions close to the endpoints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.