Abstract
Cyanobacteria and red algae use light-harvesting pigments bound by proteins to capture solar radiation and to channel excitation energy into their reaction centres. In most cyanobacteria, a multi-megadalton soluble structure known as the phycobilisome is a major light-harvesting system. Allophycocyanin is the main component of the phycobilisome core, forming a link between the rest of the phycobilisome and the reaction-centre core. The crystal structure of allophycocyanin from Thermosynechococcus elongatus (TeAPC) has been determined and refined at 3.5 A resolution to a crystallographic R value of 26.0% (R(free) = 28.5%). The structure was solved by molecular replacement using the allophycocyanin structure from Spirulina platensis as the search model. The asymmetric unit contains an (alphabeta) monomer which is expanded by symmetry to a crystallographic trimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section F, Structural biology and crystallization communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.