Abstract

The cis-trans isomerisation of maleylacetoacetate to fumarylacetoacetate is the penultimate step in the tyrosine/phenylalanine catabolic pathway and has recently been shown to be catalysed by glutathione S-transferase enzymes belonging to the zeta class. Given this primary metabolic role it is unsurprising that zeta class glutathione S-transferases are well conserved over a considerable period of evolution, being found in vertebrates, plants, insects and fungi. The structure of this glutathione S-transferase, cloned from Arabidopsis thaliana, has been solved by single isomorphous replacement with anomalous scattering and refined to a final crystallographic R-factor of 19.6% using data from 25.0 Å to 1.65 Å. The zeta class enzyme adopts the canonical glutathione S-transferase fold and forms a homodimer with each subunit consisting of 221 residues. In agreement with structures of glutathione S-transferases from the theta and phi classes, a serine residue (Ser17) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione. Site-directed mutagenesis of this residue confirms its importance in catalysis. In addition, the role of a highly conserved cysteine residue (Cys19) present in the active site of the zeta class glutathione S-transferase enzymes is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call