Abstract

Studying the interplay between nonribosomal peptide synthetases (NRPS), a major source of secondary metabolites, and crucial external modifying enzymes is a challenging task since the interactions involved are often transient in nature. By applying a range of synthetic inhibitor-type compounds, a stabilized complex appropriate for structural analysis was generated for such a tailoring enzyme and an NRPS domain. The complex studied comprises an NRPS peptidyl carrier protein (PCP) domain bound to the Cytochrome P450 enzyme that is crucial for the provision of β-hydroxylated amino acid precursors in the biosynthesis of the cyclic depsipeptide skyllamycin. The structure reveals that complex formation is governed by hydrophobic interactions, the presence of which can be controlled through minor alterations in PCP structure that enable selectivity amongst multiple highly similar PCP domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.