Abstract
We report on the unexpected structural changes caused by substitution of acidic amino acids in the Q(B) binding pocket of the bacterial photosynthetic reaction center by alanines. The mutations targeted key residues L212Glu and L213Asp of this transmembrane protein-cofactor complex. The amino acid substitutions in the L212Ala-L213Ala mutant reaction center ("AA") were known to affect the delivery of protons after the light-induced generation of Q(B)(-), which renders the AA strain incapable of photosynthetic growth. The AA structure not only revealed side chain rearrangements but also showed movement of the main chain segments that are contiguous with the mutation sites. The alanine substitutions caused an expansion of the cavity rather than its collapse. In addition, Q(B) is found mainly in the binding site that is proximal to the iron-ligand complex (closest to Q(A)) as opposed to its distal binding site (furthest from Q(A)) in the structure of the wild-type reaction center. The observed rearrangements in the structure of the AA reaction center establish a new balance between charged residues of an interactive network near Q(B). This structurally and electrostatically altered complex forms the basis for future understanding of the structural basis for proton transfer in active reaction centers which retain the alanine substitutions but carry a distant compensatory mutation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.