Abstract

The structure of a commercial dental Ag-Pd-Cu-Au casting alloy has been studied by microprobe and X-ray diffraction analyses after various heat treatments. The composition of phases in equilibrium was established. After being annealed at 400 degrees C, 500 degrees C, and 600 degrees C for seven wk, the alloy consisted of three phases: a Cu- and Pd-rich fee phase (alpha 1) with alpha = 0.372nm, a Ag-rich matrix (alpha 2) with alpha = 0.399nm, and an ordered CsCl-type bcc PdCu phase with alpha = 0.296nm. The PdCu phase was not observed above 600 degrees C, and the proportion of the alpha 1 phase decreased sharply above 700 degrees C. After being annealed at 900 degrees C, the alloy matrix was partly decomposed at the Cu-enriched grain boundaries. The decomposed areas grew into the grain interior during subsequent precipitation hardening. No segregation of Au was detected after casting, and the element was evenly distributed throughout the alloy structure after all heat treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call