Abstract
An element e of a 3-connected matroid M is essential if neither the deletion nor the contraction of e from M is 3-connected. Tutte's 1966 Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. It was proved by Oxley and Wu that if a 3-connected matroid M has a non-essential element, then it has at least two such elements. Moreover, the set of essential elements of M can be partitioned into classes where two elements are in the same class if M has a fan, a maximal partial wheel, containing both. In addition, if M has a fan with 2 k or 2 k+1 elements for some k⩾2, then M can be obtained by sticking together a ( k+1)-spoked wheel and a certain 3-connected minor of M. In this paper, it is shown how a slight modification of these ideas can be used to describe the structure of a 3-connected matroid M having a 3-separation ( A, B) such that every element of A is essential. The motivation for this study derives from a desire to determine when one can remove an element from M so as to both maintain 3-connectedness and preserve one side of the 3-separation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.