Abstract
Recent biological studies have been revolutionized in scale and granularity by multiplex and high-throughput assays. Profiling cell responses across several experimental parameters, such as perturbations, time, and genetic contexts, leads to richer and more generalizable findings. However, these multidimensional datasets necessitate a reevaluation of the conventional methods for their representation and analysis. Traditionally, experimental parameters are merged to flatten the data into a two-dimensional matrix, sacrificing crucial experiment context reflected by the structure. As Marshall McLuhan famously stated, "the medium is the message." In this work, we propose that the experiment structure is the medium in which subsequent analysis is performed, and the optimal choice of data representation must reflect the experiment structure. We review how tensor-structured analyses and decompositions can preserve this information. We contend that tensor methods are poised to become integral to the biomedical data sciences toolkit.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.