Abstract

We characterize the effect of rubidium ions on water-ice nanoislands in terms of area, fractal dimension, and apparent height by low-temperature scanning tunneling microscopy. Water nanoislands on the pristine Cu(111) surface are compared to those at similar coverage on a Rb+ pre-covered Cu(111) surface to reveal the structure-giving effect of Rb+. The presence of Rb+ induces changes in the island shape, and hence, the water network, without affecting the nanoisland volume. The broad area distribution shifts to larger values while the height decreases from three bilayers to one or two bilayers. The nanoislands on the Rb+ pre-covered surface are also more compact, reflected in a shift in the fractal dimension distribution. We relate the changes to a weakening of the hydrogen-bond network by Rb+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.