Abstract

Obg proteins belong to P‐loop guanine triphosphatase (GTPase) that are conserved from bacteria to humans. Like other GTPases, Obg cycles between guanine triphosphate (GTP) bound “on” state and guanine diphosphate (GDP)‐bound “off” state, thereby controlling various cellular processes. Different members of this group have unique structural characteristics; a conserved glycine‐rich N‐terminal domain known as obg fold, a central conserved nucleotide binding domain, and a less conserved C‐terminal domain of other functions. Obg is a ribosome dependent GTPase helps in ribosome maturation by interacting with several proteins of the 50S subunit of the ribosome. Obg proteins have been widely considered as a regulator of cellular functions, helping in DNA replication, cell division. Apart from that, this protein also takes part in various stress adaptation pathways like a stringent response, sporulation, and general stress response. In this particular review, the structural features of ObgE have been highlighted and how the structure plays important role in interacting with regulators like GTP, ppGpp that are crucial for executing biological function has been orchestrated. In particular, we believe that Obg‐like proteins can provide a link between different global pathways that are necessary for fine‐tuning cellular processes to maintain the cellular energy status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.