Abstract
In this work, the vibrations of mixed coverage Si(111)−H/Cl surfaces are determined using quantum chemical calculations and Fourier transform infrared spectroscopy. The structure and symmetry considerations of the modes are used to assign the vibrational frequencies for varying coverages of both hydrogen and chlorine on the surface. Significant shifts in the Si−H and Si−Cl stretching frequencies are found as a function of coverage, while the bending modes are shifted very slightly. Our results suggest that Si−H stretching shifts can be used as a probe for chlorine coverage during the reaction of chlorine precursors with the hydrogen-terminated Si(111) surface. Finally, an analysis of coverage dependence suggests that a chemical inductive effect is the dominant origin of the resulting stretching frequency shifts, though a small contribution from the lone pairs interacting with the surface is also possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.