Abstract

AbstractA first principles density funtional computational method has been used to investigate the atomic stucture and energy of various distinct forms of the σ = 5(001) twist grain boundary in SrTiO3. The study focuses on four non-stoichiometric geometries which are all found to be stable to be the most stable. The grain boundary energies are computed as a function of TiO2 chemical potential and these define the limits of stability. The computed volume expansions are consistent with experimental observation and the in plane relaxations lower the boundary symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.