Abstract
Density functional theory has been employed in order to investigate the structure and stability of Si@Al12Hn ( $n=1\!\!-\!\!14$ ) clusters. Hydrogenated Si@Al12 clusters exhibit pronounced stability for even numbers of H atoms. Large binding energy, HOMO-LUMO gaps and increased ionization potentials imply that these clusters should be physically and chemically stable. The analysis of the charge density of the HOMO plot illustrates that a pair of hydrogen atoms prefer to occupy opposing on-top sites for clusters with an even n number. Studies of deformation charge density plots demonstrate that significant charge transfer occurs from the Si@Al12 to the H atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.